Sets and N-tuples


Β 
ℝ : The set of Real Number
Β 
β„• : The set of Natural Numbers
β„•= { 1 , 2, 3, ...}
Β 
β„€: The set of Integers
β„€ = {..., -2, -1, 0, 1, 2, ...}
Β 
β„š: The set of Rational Numbers
β„š = {x ∈ ℝ | x = for same m,n ∈ β„€}
Ǝ m,n ∈ β„€, such that x=
Β 
= {x ∈ ℝ | x β‰₯ 0 }
/
Β 
For any set X, we can for n-tuples / lists of elements of X:
Β 
(1) = {x | x = (, ), ∈ ℝ}
x = (, )
(2, 2, 5) (2, 5, 2)
[Order matters, Repetition is ok]
(2) = { }, n = β„€
Β 
Β 
N-Tuples vs. Sets:
πŸ‡ΊπŸ‡Έ Usa= {R, W, B}
πŸ‡²πŸ‡«France = {R, B, W}
πŸ‡¨πŸ‡³C = {R, Y}
Β 
No good!
πŸ‡¨πŸ‡¦ β‰  {R, W, R, R}
= {R, W} = {W, R}
[Order doesn't matter, no repetition]
Β 
Β 
Β 
Β 
Β 
Β 
Β 
S(x): "Statement about x is true"
P(x): "x has property P"
Β 
Universal Quantifier:
x∈ X: S(x) [For every x∈ X, S(x) true]
Existential Quntifier:
x∈ X: S(x) [There exists an x∈ X such that S(X) true]
x∈ X: S(x) [There exists a unique x∈ X such that S(X) true]

x ∈ ℝ: (True statement)
x ∈ ℝ: (False statement)
x ∈ β„•: (True statement)
x ∈ ℝ: (True statement)
x ∈ ℝ: (False statement)
x ∈ β„•: (True statement)
x ∈ β„€: (False statement)
x,y ∈ ℝ: x+y = y+x (T) x,y ∈ ℝ: xy = yx (T) [commutative]
A,B ∈ Matrix : AB = BA (False, but there is counterexample)
Β 
Recall
Β 
Definition: For sets X and Y, the
Cartesian Product[데카λ₯΄νŠΈ κ³±] of X and Y is
XY : ={(x,y) | x ∈ X, y ∈ Y}
For sets :
Β 
Definition: A function f: Xβ€”> Y for sets X and Y is a subset f X Γ— Y that satisfies
βˆ€x∈X: βˆƒ! y∈Y : (x,y) ∈ f. we write f(x)=y for (x,y) ∈ f.
y = f(x) [ f(x) = y means x is in item y ]
Β 
X = {Usa, Canada, Mexico}
H = {N, S}
Β 
notion imagenotion image
Β 
Let F: Xβ€”>Y be a function
The domain of f is dom f=X
The target of f is target f = Y
The image of a set S X under f is f(S): = {f(x)| x ∈ S} = {y∈Y | x∈S: f(x) = y}
The range f is f(x)
The pre image of a set V Y is (v): = { x ∈ X | f(x) ∈ V}
f is onto Y if βˆ€ y ∈ Y :βˆƒ x ∈ X: f(x) = y
f is one-to-one if βˆ€ y ∈ f(x) :βˆƒ! x ∈ X, f(x) = y
f is a 1-to-1 correspondence between x and y if βˆ€ y ∈ f(x) :βˆƒ! x ∈ X, f(x) = y
Β